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Introduction

Acetylcholinesterase (AChE; E.C. 3.1.1.7) inhibitors 
are compounds which have been of interest for several 
decades. They are used for the treatment of neurodegen-
erative diseases such as Alzheimer’s disease or myasthe-
nia gravis [1–2]. In addition, some AChE inhibitors are 
used as pre-exposure drugs to protect against organo-
phosphorus poisonings, such as nerve agents [3].

Generally, the organophosphorus (OP) compounds (e.g. 
nerve agents and pesticides) are lethal, causing irrevers-
ible inhibition of AChE [4]. Consequently, acetylcholine 

accumulates on the synaptic junctions and this excess 
causes permanent stimulation of the muscarinic or nico-
tinic receptors. Gradually, the stimulation of the receptors 
leads to a cholinergic crisis and death by malfunction of 
the muscles associated with breathing control [5]. Among 
the OP compounds, nerve agents are among the most 
toxic compounds that have been developed by man. There 
are several methods to counteract the toxicity of nerve 
agents [5] either involving a pre-exposure or post-exposure 
approach. Reversible AChE inhibitors, stoichiometric and 
catalytic scavengers can be used as a pre-exposure strategy 
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[6], whilst a post-exposure treatment usually consists of a 
combination of an anticholinergic drug, AChE reactivator 
and an anticonvulsant such as diazepam [5].

With regard to the pre-exposure strategies, the only 
method currently allowed for human use is based on 
reversible AChE inhibitors (usually carbamates, e.g. pyri-
dostigmine bromide, neostigmine bromide; 1–2; Figure 
1) in combination with anticholinergic drugs (e.g. ben-
actyzine, trihexyphenidyl) to antagonise the effects of the 
accumulated acetylcholine [7]. The carbamates reversibly 
inhibit AChE, protect the enzyme against inhibition by 
OP and are spontaneously decarbamylated with normal 
restoration of AChE activity [8]. However, although car-
bamates are widely used, they are known for many side 
effects including gastrointestinal effects (nausea, intesti-
nal obstruction), increased bronchial secretion, cardiac 
arrhythmia or a cholinergic crisis [9–10].

The most widely used carbamate for OP pre-treatment 
is pyridostigmine (1) [7]. Its charged molecule has poor 
penetration of the blood-brain barrier (BBB) and probably 
cannot protect brain AChE, but the pre-treatment effect is 
ensured by use of anticholinergic drugs (benactyzine, tri-
hexyphenidyl) [11]. On account of its serious side effects, 
a carbamate inhibitor 1 in combined pre-treatment strat-
egies, can be replaced by other reversible inhibitors (e.g. 
hupezine A) [7]. The advantage of such reversible cho-
linesterase inhibitors should be its selectivity for AChE, 
where butyrylcholinesterase (BChE; EC 3.1.1.8) can act 
as a physiological scavenger of OP. Decreasing the side 
effects of a new reversible inhibitor would also be an 
advantage if it does not directly affect the AChE active site 
(S203). However, there remains the problem of BBB pen-
etration that can be overcome by anticholinergic drugs 
(benactyzine, trihexyphenidyl) thereby without increas-
ing toxicity from the reversible AChE inhibitor.

Due to these necessary improvements for protect-
ing against OP, a series of symmetrical bisquaternary 
compounds bearing (2E)-buten-1,4-diyl linkage were 
synthesised to potentially replace pyridostigmine for 
the combined pre-exposure strategy. The quaternary 
compounds (e.g. AChE reactivators) are also known to 
be receptor acting drugs [12]. Many of them were found 
to be potent activators, competitive antagonists or non-
competitive blockers of muscarinic or nicotinic receptors. 
However, their effects on receptors cannot be accurately 
predicted and the quaternary origin of these novel com-
pounds might help to increase protection against OP [12].

The design of novel compounds (5–21; Figure 2) 
originated from AChE reactivators (e.g. pralidoxime, 

K203; 3–4), especially those bearing the same but-
(2E)-en-1,4-diyl linkage (4), that had been previously 
found to protect against OP exposure both in vitro and 
in vivo [13–15]. Essentially, the core part of the newly 
prepared molecules remained consistent with former 
AChE reactivators including a but-(2E)-en-1,4-diyl 
linkage and two pyridinium rings. The oxime moieties 
on both pyridinium rings were changed and a broad 
variety of functional groups were added. The functional 
groups were chosen as representatives of lipophilic 
(Me, Ph) or hydrophilic (OH, COOH) moieties to assess 
the potential interactions with the enzyme’s active site 
[16]. Specifically these were placed on the 4-position 
on the pyridinium ring as this was the most suitable for 
potential interactions within the narrow AChE cleft and 
so would hypothetically increase its inhibitory ability 
towards AChE [17].

All the new compounds were prepared using a stan-
dard synthetic strategy [18]. The solution containing the 
pyridine derivative (4.7 mmol) and 1,4-dibromobut-(2E)-
ene (2.3  mmol) in dimethylformamide (DMF) (10 ml) 
was stirred at 70°C for 2 to 48 hours. Subsequently, the 
reaction mixture was cooled to room temperature. It was 
then portioned with acetone (50 ml) and again cooled in a 
refrigerator (5°C) overnight. The crystalline or amorphous 
crude product was collected by filtration, washed with ace-
tone (3 × 20 ml) and re-crystallised from MeCN [19]. NMR, 
ESI-MS and elemental analysis were used to determine the 
purity of all the compounds.

Material and methods

Chemistry
Solvents (acetone, DMF, MeCN) and reagents were 
purchased from Fluka (Prague, Czech Republic) and 
Sigma-Aldrich (Prague, Czech Republic) and used with-
out further purification. Reactions were monitored by 
TLC using DC-Alufolien Cellulose F (Darmstadt, Merck, 
Germany) and a mobile phase of BuOH-CH

3
COOH-

H
2
O 5:1:2, detection by solution of Dragendorff reagent 

(solution containing 10 mL CH
3
COOH, 50 mL H

2
O and 

5 mL of basic solution prepared by mixing of two frac-
tions – fraction A: 850 mg Bi(NO

3
)

3
, 40 mL H

2
O, 10 mL 

CH
3
COOH; fraction B: 8 g KI, 20 mL H

2
O). Melting points 

were measured on a micro heating stage PHMK 05 (VEB 
Kombinat Nagema, Radebeul, Germany) and were 
uncorrected.

NMR spectra were generally recorded using a Varian 
Gemini 300 (1H 300 MHz, 13C 75 MHz, Palo Alto CA, USA). 

N

O N

O
Br

pyridostigmine(1)

O N

O

BrN

neostigmine(2)

N
Cl

pralidoxime(3)

NOH
2 Br

N
N

K203(4)

O

NH2

HON

Figure 1.  Selected acetylcholinesterase inhibitors and reactivators.
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In all cases, the chemical shift values for 1H spectra were 
reported in ppm (δ) relative to residual CHD

2
SO

2
CD

3
 

(δ 2.5) or D
2
O (δ 4.79), shift values for 13C spectra are 

reported in ppm (δ) relative to solvent peak dimethylsul-
phoxide - d

6
 δ 39.43. Signals are quoted as s (singlet), d 

(doublet), t (triplet) and m (multiplet).
The mass spectra (MS respectively MSn) were mea-

sured on a LCQ FLEET ion trap and evaluated using 
Xcalibur v 2.5.0 software (both Thermo Fisher Scientific, 
San Jose, CA, USA). The sample was dissolved in 
deionised water (Goro, Prague, Czech Republic) and 
injected continuously (8 ul/ min) by Hamilton syringe 
into the electrospray ion source. The parameters for the 
electrospray were set up as follows: sheath gas flow rate 
20 arbitrary units, aux gas flow rate 5 arbitrary units, 
sweep gas flow rate 0 arbitrary units, spray voltage 5 kV, 
capillary temperature 275°C, capillary voltage 13 V, tube 
lens 100 V.

Prepared bisquaternary salts
but-(2E)-en-1,4-diyl-1,1’-bis(4-methylpyridinium) dibromide (5)
Mp 256–257°C. Yield 54%. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 8.71–8.67 (m, 4H, H–2,2’,6,6’), 8.08–8.04 (m, 4H, 
H–3,3’,5,5’), 6.17–6.12 (m, 2H, =CH-), 5.17–5.14 (m, 4H, 
-CH

2
-), 3.65 (s, 6H, N-CH

3
). 13C NMR (75 MHz, DMSO 

d
6
): δ (ppm) 150.26, 147.04, 145.84, 131.25, 126.01, 62.45. 

ESI-MS: m/z 239.9 [M2+] (calculated for [C
16

H
20

N
2

2+] 240.16). 

EA: calculated 48.02% C, 5.04% H, 7% N; found 48.44% C, 
4.87% H, 5.24% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-ethylpyridinium) dibromide (6)
Mp 227–228°C. Yield 49%. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 8.55 (d, 4H, J = 6.2 Hz, H–2,2’,6,6’), 7.96 (d, 4H, J 
= 6.2 Hz, H–3,3’,5,5’), 6.28–6.24 (m, 2H, =CH-), 5.30–5.25 
(m, 4H, -CH

2
-), 2.98 (m, 4H, -CH

2
-CH

3
), 1.31 (t, 6H, J = 7.4 

Hz, -CH
3
). 13C NMR (75 MHz, DMSO d

6
): δ (ppm) 142.78, 

129.31, 127.08, 60.23, 27.93, 12.15. ESI-MS: m/z 268.1 
[M2+] (calculated for [C

18
H

24
N

2
2+] 268.19). EA: calculated 

50.49% C, 5.65% H, 6.54% N; found 50.12% C, 5.56% H, 
6.76% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-tert-butylpyridinium) 
dibromide (7)
Mp 235–237°C. Yield 66%. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 8.74 (d, 4H, J = 5.8 Hz, H–2,2’,6,6’), 8.12 (d, 4H, J 
= 5.8 Hz, H–3,3’,5,5’), 6.29–6.25 (m, 2H, =CH-), 5.31–5.27 
(m, 4H, -CH

2
-), 1.39 (s, 18H, CH

3
-). 13C NMR (75 MHz, 

DMSO d
6
): δ (ppm) 142.82, 129.33, 125.02, 60.07, 35.46, 

28.55. ESI-MS: m/z 324.1 [M2+] (calculated for [C
22

H
32

N
2

2+] 
324.26). EA: calculated 54.56% C, 6.66% H, 5.78% N; found 
54.3% C, 6.76% H, 5.84% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-phenylpyridinium)  
dibromide (8)
Mp 259–261°C. Yield 55%. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 8.78–8.65 (m, 4H, H–2,2’,6,6’), 8.31–8.17 (m, 4H, 
H–3,3’,5,5’), 7.94–7.79 (m, 4H, Ph–2,2’,6,6’), 7.63–7.44 (m, 
6H, Ph–3,3’,4,4’,5,5’), 6.23–6.12 (m, 2H, =CH-), 5.23–5.11 
(m, 4H, -CH

2
-). 13C NMR (75 MHz, DMSO d

6
): δ (ppm) 

157.65, 157.63, 145.52, 134.73, 133.86, 131.25, 129.37, 
126.19, 61.98. ESI-MS: m/z 364.2 [M2+] (calculated for 
[C

26
H

24
N

2
2+] 364.19). EA: calculated 59.56% C, 4.61% H, 

5.34% N; found 59.85% C, 4.4% H, 4.9% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-phenylmethylpyridinium) 
dibromide (9)
Mp 212–214°C. Yield 4%. 1H NMR (300 MHz, DMSO 
d

6
): δ (ppm) 9.32 (d, 2H, J = 6.1 Hz, H–2,6), 8.98 (d, 

2H, J = 6.1 Hz, H–2’,6’), 8.41 (d, 2H, J = 6.1 Hz, H–3,5), 
8.08 (d, 2H, J = 6.1 Hz, H–3’,5’), 7.94–7.77 (m, 3H, Ph), 
7.72–7.58 (m, 2H, Ph), 7.44–7.23 (m, 5H, Ph), 6.43–6.12 
(m, 2H, =CH-), 5.58–5.19 (m, 4H, N-CH

2
-), 4.3 (s, 4H, 

Ph-CH
2
-). 13C NMR (75 MHz, DMSO d

6
): δ (ppm) 151.98, 

145.85, 144.48, 137.5, 134.84, 134.04, 130.24, 130.09, 
129.97, 129.11, 129.05, 128.88, 127.67, 127.03, 126.87, 
60.99, 60.13. ESI-MS: m/z 391 [M2+-H] (calculated for 
[C

28
H

28
N

2
2+-H] 391.22). EA: calculated 60.89% C, 5.11% 

H, 5.07% N; found 60.28% C, 5.57% H, 5.67% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-(3-phenylpropyl)-pyridinium) 
dibromide (10)
Mp 204–206°C. Yield 43%. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 8.58 (d, 4H, J = 6.1 Hz, H–2,2’,6,6’), 7.79 (d, 4H, J = 
6.1 Hz, H–3,3’,5,5’), 7.27–7.11 (m, 10H, Ph), 6.18–6.14 (m, 
2H, =CH-), 5.23–5.19 (m, 4H, -CH

2
-), 2.89 (t, 4H, J = 7.3 

N
N

R

R

2 Br
DMF;70°C

N Br
Br

R

5, R = Me

6, R = Et

7, R = tert.-Bu

8, R = Ph

9, R = Bn

10, R = (CH2)3Ph

11, R = 4-NO2-Bn

12, R = OH

13, R = CH2OH

14, R = (CH2)3OH

15, R = N(CH3)2

16, R = CH=NOH

17, R = COCH3

18, R = COOH

19, R = COOCH3

20, R = CONH2

21, R = CN

Figure 2.  Prepared bisquaternary pyridinium salts.
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Hz, Pyr-CH
2
-), 2.63 (t, 4H, J = 7.3 Hz, Ph-CH

2
-), 2.06–1.94 

(m, 4H, Pyr-CH
2
-CH

2
-). 13C NMR (75 MHz, DMSO d

6
): 

δ (ppm) 142.7, 141.24, 129.39, 128.28, 128.08, 127.72, 
125.65, 60.3, 34.22, 33.94, 29.79. ESI-MS: m/z 447.9 [M2+] 
(calculated for [C

32
H

36
N

2
2+] 448.29). EA: calculated 63.17% 

C, 5.96% H, 4.6% N; found 63.16% C, 6.22% H, 4.61% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-(4-nitrobenzyl)-pyridinium) 
dibromide (11)
Mp 248–249°C. Yield 81 %. 1H NMR (300 MHz, DMSO 
d

6
): δ (ppm) 8.62 (d, 4H, J = 6.1 Hz, H–2,2’,6,6’), 7.99–7.89 

(m, 4H, H–3,3’,5,5’), 7.79 (d, 4H, J = 7 Hz, Ph–2,2’,6,6’), 
7.37 (d, 4H, J = 7 Hz, Ph–3,3’,5,5’), 6.1–6.04 (m, 2H, 
=CH-), 5.18–5.03 (m, 4H, N-CH

2
-), 4.28 (s, 4H, Ph-CH

2
-). 

13C NMR (75 MHz, DMSO d
6
): δ (ppm) 147.85, 146.03, 

145.34, 131.82, 131.19, 129.63, 125.34, 62.22, 41.49. 
ESI-MS: m/z 482.3 [M2+] (calculated for [C

28
H

26
N

4
O

4
2+] 

482.19). EA: calculated 52.36% C, 4.08% H, 8.72% N; 
found 52.53% C, 4.37% H, 8.36% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-hydroxypyridinium) dibromide 
(12)
Mp 258–260°C. Yield 53 %. 1H NMR (300 MHz, DMSO 
d

6
): δ (ppm) 8.48 (d, 4H, J = 6.4 Hz, H–2,2’,6,6’), 7.24 

(d, 4H, J = 6.4 Hz, H–3,3’,5,5’), 6.24–6.12 (m, 2H, =CH-), 
5.12–5.03 (m, 4H, -CH

2
-). 13C NMR (75 MHz, DMSO 

d
6
): δ (ppm) 144.6, 128.96, 114.34, 58.81. ESI-MS: m/z 

244.1 [M2+] (calculated for [C
14

H
16

N
2
O

2
2+] 244.12). EA: 

calculated 41.61% C, 3.99% H, 6.93% N; found 41.45% C, 
4.35% H, 7.07% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-hydroxymethylpyridinium) 
dibromide (13)
Mp 210–212°C. Yield 48 %. 1H NMR (300 MHz, D

2
O d

6
): 

δ (ppm) 8.76 (d, 4H, J = 5.5 Hz, H–2,2’,6,6’), 8.03 (d, 4H, 
J = 5.8 Hz, H–3,3’,5,5’), 6.27–6.22 (m, 2H, =CH-), 5.33–5.27 
(m, 4H, -CH

2
-), 4.96 (s, 4H, -CH

2
-OH). 13C NMR (75 MHz, 

D
2
O): δ (ppm) 162.11, 143.39, 129.5, 124.42, 61.1, 60.65. 

ESI-MS: m/z 271 [M2+-H] (calculated for [C
16

H
20

N
2
O

2
2+-H] 

271.15.). EA: calculated 44.47% C, 4.66% H, 6.48% N; 
found 44.62% C, 4.9% H, 6.3% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-(3-hydroxypropyl)pyridinium) 
dibromide (14)
Mp 171–173°C. Yield 69 %. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 8.96 (d, 4H, J = 5.8 Hz, H–2,2’,6,6’), 8.06 (d, 4H, 
J = 5.8 Hz, H–3,3’,5,5’), 6.21–6.16 (m, 2H, =CH-), 5.32–5.28 
(m, 4H, -CH

2
-), 3.43 (t, 4H, J = 6.2 Hz, -CH

2
-OH), 2.9 (t, 

4H, J = 7.6 Hz, -CH
2
-N), 1.81 (m, 4H, -CH

2
-CH

2
-N). 13C 

NMR (75 MHz, DMSO d
6
): δ (ppm) 143.98, 130.07, 127.7, 

59.94, 59.53. ESI-MS: m/z 327.9 [M2+] (calculated for 
[C

20
H

28
N

2
O

2
2+] 328.21). EA: calculated 49.2% C, 5.78% H, 

5.74% N; found 48.87% C, 6% H, 6.01% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-(N,N-dimethylamino)-
pyridinium) dibromide (15)
Mp decomp 314°C. Yield 68 %. 1H NMR (300 MHz, 
DMSO d

6
): δ (ppm) 7.94 (d, 4H, J = 6.7 Hz, H–2,2’,6,6’), 

6.82 (d, 4H, J = 6.7 Hz, H–3,3’,5,5’), 5.88–5.84 (m, 2H, 
=CH-), 4.7–4.66 (m, 4H, -CH

2
-), 3.07 (s, 12H, N-CH

3
). 

13C NMR (75 MHz, DMSO d
6
): δ (ppm) 157.08, 142.53, 

130.57, 108.77, 58.57, 40.75. ESI-MS: m/z 297.9 [M2+] 
(calculated for [C

18
H

26
N

4
2+] 298.21). EA: calculated 

47.18% C, 5.72% H, 12.23% N; found 47.12% C, 6.04% 
H, 12.15% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-
hydroxyiminomethylpyridinium) dibromide (16)
Mp 232–234°C. Yield 95%. Further physic-chemical data 
are consistent with the literature [20].

but-(2E)-en-1,4-diyl-1,1’-bis(4-methylcarbonylpyridinium) 
dibromide (17)
Mp 228–230°C. Yield 56 %. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 9.36 (d, 4H, J = 5.6 Hz, H–2,2’,6,6’), 8.54 (d, 4H, 
J = 5.8 Hz, H–3,3’,5,5’), 6.32–6.26 (m, 2H, =CH-), 5.53–5.47 
(m, 4H, -CH

2
-), 2.76 (s, 6H, -CH

3
). 13C NMR (75 MHz, 

DMSO d
6
): δ (ppm) 195.67, 148.63, 146.39, 130.21, 125.92, 

60.87, 27.49. ESI-MS: m/z 296.0 [M2+] (calculated for 
[C

18
H

20
N

2
O

2
2+] 296.15). EA: calculated 47.39% C, 4.42% H, 

6.14% N; found 47.51% C, 4.66% H, 5.97% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-carboxypyridinium) dibromide 
(18)
Mp 274–276°C. Yield 35 %. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 9.27 (d, 4H, J = 5.9 Hz, H–2,2’,6,6’), 8.51 (d, 4H, 
J = 5.9 Hz, H–3,3’,5,5’), 6.27–6.22 (m, 2H, =CH-), 5.5–5.45 
(m, 4H, -CH

2
-). 13C NMR (75 MHz, DMSO d

6
): δ (ppm) 

146.3, 145.61, 130.18, 127.31, 61.03. ESI-MS: m/z 299.7 
[M2+] (calculated for [C

16
H

16
N

2
O

4
2+] 300.11). EA: calcu-

lated 41.77% C, 3.5% H, 6.09% N; found 41.44% C, 3.8% 
H, 6.29% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-methyloxycarbonylpyridinium) 
dibromide (19)
Mp 179–181°C. Yield 80 %. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 9.33 (d, 4H, J = 5.8 Hz, H–2,2’,6,6’), 8.54 (d, 4H, 
J = 5.6 Hz, H–3,3’,5,5’), 6.29–6.24 (m, 2H, =CH-), 5.54–5.47 
(m, 4H, N-CH

2
-), 4.45 (q, 4H, J = 7 Hz, O-CH

2
-), 1.37 (t, 

6H, J = 7 Hz, O-CH
2
-CH

3
). 13C NMR (75 MHz, DMSO d

6
): δ 

(ppm) 161.95, 146.43, 144.12, 130.18, 127.15, 62.93, 61.07, 
13.81. ESI-MS: m/z 328 [M2+] (calculated for [C

18
H

20
N

2
O

4
2+] 

328.14). EA: calculated 44.29% C, 4.13% H, 5.74% N; found 
44.45% C, 3.93% H, 5.55% N.

but-(2E)-en-1,4-diyl-1,1’-bis(4-carbamoylpyridinium) 
dibromide (20)
Mp 268–270°C. Yield 90 %. 1H NMR (300 MHz, DMSO 
d

6
): δ (ppm) 9.28 (d, 4H, J = 5.5 Hz, H–2,2’,6,6’), 8.75 (s, 

2H, -CONH
2
), 8.48 (d, 4H, J = 5.6 Hz, H–3,3’,5,5’), 8.31 (s, 

2H, -CONH
2
), 6.28–6.21 (m, 2H, =CH-), 5.48–5.39 (m, 4H, 

-CH
2
-). 13C NMR (75 MHz, DMSO d

6
): δ (ppm) 163.19, 

148.39, 145.89, 130.1, 125.86, 60.82. ESI-MS: m/z 298 
[M2+] (calculated for [C

16
H

18
N

4
O

2
2+] 298.14). EA: calcu-

lated 41.95% C, 3.96% H, 12.23% N; found 41.85% C, 3.8% 
H, 12.32% N.
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but-(2E)-en-1,4-diyl-1,1’-bis(4-carbonitrilpyridinium) 
dibromide (21)
Mp 251–253°C. Yield 46 %. 1H NMR (300 MHz, DMSO d

6
): 

δ (ppm) 9.02 (d, 4H, J = 6.1 Hz, H–2,2’,6,6’), 8.38 (d, 4H,  
J = 6.1 Hz, H–3,3’,5,5’), 6.25–6.21 (m, 2H, =CH-), 5.32–5.28 
(m, 4H, -CH

2
-). 13C NMR (75 MHz, DMSO d

6
): δ (ppm) 

147.17, 132.54, 131.39, 129.63, 115.56, 63.78. ESI-MS: 
m/z 262 [M2+] (calculated for [C

16
H

14
N

4
2+] 262.12). EA: 

calculated 45.53% C, 3.34% H, 13.27% N; found 45.63% C, 
3.26% H, 13.24% N.

In vitro assay
A multichannel Sunrise spectrophotometer (Tecan, 
Salzburg, Austria) was used for all measurements of 
cholinesterases activity. An optimised Ellman’s proce-
dure was slightly adapted in order to estimate the anti-
cholinergic properties [21]. Some 96-well photometric 
microplates made from polystyrene (Nunc, Rockilde, 
Denmark) were used for measuring purposes. Human 
erythrocyte AChE or human plasmatic BChE (Prague, 
Aldrich; commercially purified by affinity chromatogra-
phy) were suspended into phosphate buffer (pH 7.4) up 
to a final activity of 0.002 U/μL. Cholinesterase (5 μL), 
freshly mixed solution of 0.4 mg/mL 5,5’-dithio-bis(2-
nitrobenzoic) acid (40 μL), 1 mM acetylthiocholine chlo-
ride in phosphate buffer (20 μL) and the appropriate 
concentration of the inhibitor (1 mM–0.1 nM; 5 μL) were 
injected into each well. The absorbance was measured 
at 412 nm after 5 minutes incubation using automated 
shaking of the microplate. All measurements were per-
formed in triplicate.

The percentage inhibition (I) was calculated from the 
measured data as follows:

I 1= −
∆
∆

A

A
i

0

where ΔAi indicates the absorbance change provided 
by cholinesterase exposed to an anticholinergic com-
pound. ΔA

0
 indicates the absorbance change caused by 

the intact cholinesterase, where phosphate buffer was 
applied instead of the anticholinergic compound.

The IC
50

 was determined using the software package 
Origin 6.1 (Northampton, MA, USA). The percentage 
inhibition was calculated by a Hill plot (n = 1). The other 
plot variants were not optimal and their correlation coef-
ficients were lower compared to the chosen method. 
Subsequently, the IC

50
 was computed.

Enzyme kinetics assay
Human erythrocyte AChE (Aldrich) was used throughout 
the experiments. The adapted photometrical Ellman’s 
method was used to evaluate the AChE activity [22]. A 
polystyrene cuvette was filled with 0.4 mg/ml DTNB 
(0.4 ml), AChE solution with an overall activity of 0.5 μkat 
(μmol/s) in phosphate buffered saline (PBS; 25 μL), tested 
inhibitor (25 μL), and PBS (450 μL). The mixture was gently 
shaken and the reaction was started by addition of varying 

concentration (0.1 mM–1 M) of ATChCl in PBS (100 μL). 
The yellow colour produced by the 5-thio-2-nitrobenzoic 
acid was measured at 412 nm against a control blank (mix-
ture of DTNB and ATChCl in given concentrations). The 
spontaneous interaction between the tested inhibitor and 
DTNB was excluded after incubation of the whole reaction 
mixture without AChE that was replaced by PBS (25 μL). 
The inhibition was evaluated by a Lineweaver-Burk plot for 
all inhibitor concentrations (10−8–10−2 mol/L) and ATChCl 
concentrations (10−5–10−1 mol/L). The measurements were 
carried out in triplicate and the average value was used for 
the plot construction.

The obtained data were processed by Origin 8.0 soft-
ware (Northampton, MA, USA). The constants were 
calculated from the enzyme kinetics using a Lineweaver-
Burk plot (double reciprocal plot). The AChE dissociation 
constant for the enzyme-inhibitor complex (K

i1
) and the 

dissociation constant for the enzyme–inhibitor–sub-
strate complex (K

i2
) were calculated using the following 

equations:

K
E I

EIi1 = [ ][ ]
[ ]

K
ES I

ESIi 2 = [ ][ ]
[ ]

Molecular docking
The docking calculations were carried out using Autodock 
4.0.1 [23]. The structure of mus musculus AChE and human 
AChE were prepared from the crystal structure (pdb code 
2jez, 2jf0 and 1b41) using the Autodock Tools 1.5.2 [23]. 
The 3D affinity grid box was designed to include both the 
full active and the peripheral site of AChE. The number 
of grid points in the x-, y- and z-axes was 110, 110 and 
110 with grid points separated by 0.253 Å. The molecular 
models of ligands were built using ChemDraw 11.1 and 
minimised with UCSF Chimera 1.3 (Amber Force field) 
in the charged form [24]. Docking calculations were set 
to 50 runs. A population of 150 individuals and 2 500 000 
function evaluations were used. The structure optimisa-
tion was performed for 27 000 generations using a genetic 
algorithm. The maximum root mean square tolerance for 
the conformational cluster analysis was 2 Å. At the end of 
calculation, the Autodock performed cluster analysis was 
utilised. The visualisations of the enzyme-ligand interac-
tions (Figure 3 and Figure 4) were prepared using Pymol 
1.1 [25].

Results and discussion

In vitro results
The bisquaternary compounds were assayed for their 
inhibitory ability using a standard inhibition test utilis-
ing human erythrocyte AChE (hAChE) and human plas-
matic BChE (hBChE) [21]. The hAChE was chosen as the 
main target for the OP pre-treatment [11]. Additionally, 
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hBChE was chosen as a member of the cholinesterase 
family, which is usually affected by all the compounds 
that interact with AChE [26]. The IC

50
 values of all com-

pounds are listed in Table I.
Based on the inhibition of hAChE, the commercial 

compound 1 presented a satisfactory inhibition of 
AChE in the µM range. In contrast, compound 2 was a 
stronger inhibitor of hAChE and had an IC

50
 approxi-

mately three orders of magnitude lower compared to 
1. From these in vitro results, compound 2 appears 
to be a potentially more valuable inhibitor of hAChE 
between these two tested carbamate compounds. The 
AChE reactivators are also known for their inhibitory 
ability towards AChE [27] as some of them were found 
to be potent AChE reactivators/inhibitors in vitro [28]. 
However, both the tested reactivators (3, 4) presented 
only a minor inhibition of hAChE that probably limits 
their use in pre-exposure treatment as functional AChE 
inhibitors. Therefore their potential receptor mediated 
protection against OP should be further studied.

Among the newly prepared compounds (3–19), the 
inhibitory ability towards hAChE greatly varied within 
the whole series. One novel compound (7) was not sol-
uble in the screening solution and consequently could 
not be evaluated. Two compounds (16, 18) showed 
negligible inhibition on a mM scale. Some compounds 
(4, 6, 9–12, 14–15, 17, 19) showed inhibition on a less 
than mM scale, but did not exceed the standard carbam-
ate inhibitor 1. More interestingly, four compounds (3, 
5, 8, 13) presented an inhibitory ability comparable (5) 
or better (3, 8, 13) than the standard carbamate 1. In 
addition, one newly prepared compound (8) showed 
an inhibition of hAChE on a nM scale and exceeded 
both carbamate inhibitors 1 and 2.

For hBChE, the commercial compound 1 was found to 
be a very poor inhibitor. Interestingly, a second carbam-
ate compound (2) showed a strong inhibition of hBChE 
on a less than µM scale and about 5 orders of magnitude 

W86

P338

Y341

H287

W286 Y124 S203

Figure 3.  Docking results for compound 10 with hAChE.
Figure 4.  Penetration of compound 10 into the the hAChE active site 
gorge.

Table 1.  The IC50 values of the tested compounds (a; no inhibition observed; b; not soluble in screening medium).
Compound AChE IC50 ± SD (µM) BChE IC50 ± SD (µM) Ki1/Ki2 (µM)
pyridostigmine (1) 40 ± 7.8 16 000 ± 260.8 4.94/2.52
neostigmine(2) 0.1 ± 0.02 0.8 ± 0.13 0.44/0.07
pralidoxime (3) 878 ± 171 a ---
K203 (4) 566 ± 110 3 130 ± 510 ---
5 0.9 ± 0.2 a ---
6 212 ± 41 850 ± 138 ---
7 40 ± 8 169 ± 28 ---
8 71 ± 14 18 ± 3 ---
9  b b ---
10 0.05 ± 0.01 22 ± 4 0.003/0.009
11 73 ± 14 18 ± 3 ---
12 509 ± 99 a ---
13 799 ± 155 4 510 ± 735 ---
14 54 ± 11 1 440 ± 234 ---
15 1.2 ± 0.2 17 ± 3 ---
16 189 ± 37 1 620 ± 264 ---
17 139 ± 27 324 ± 53 ---
18 3 870 ± 754 a ---
19 401 ± 78 a ---
20 1 200 ± 234 a ---
21 70 ± 14 514 ± 84 ---
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better than 1. The AChE reactivators (3, 4) were negli-
gible inhibitors of hBChE. Among the newly prepared 
compounds (3–19), the inhibitory ability towards hBChE 
greatly varied within the whole series. One novel com-
pound (7) was not soluble in the screening solution and 
consequently could not be further evaluated. Several 
novel compounds (3, 10, 16–18) showed no inhibition of 
hBChE activity. Three compounds (11–12, 14) were neg-
ligible inhibitors at the mM scale and four compounds 
(4–5, 15, 19) were poor inhibitors on a less than mM 
scale. More interestingly, several newly prepared com-
pounds (6, 8–9, 13) showed inhibition at the µM scale. 
However, the novel compounds were not able to exceed 
the carbamate 2 at hBChE inhibition.

The IC
50

 screening method provides a complex 
comparison between inhibitors because of their 
different inhibition mechanisms, and so the kinet-
ics data were measured for specific compounds of 
interest. The dissociation constants (K

i1
 and K

i2
) were 

calculated for 2 carbamate standards (1, 2) and for 
the most promising compound (8) interacting with 
hAChE [22]. In all cases, a non-competitive mecha-
nism of inhibition was confirmed by the shape of the 
Lineweaver-Burk plot. For pyridostigmine (1), the inhi-
bition constants differed approximately two fold (K

i1
 =  

4.94 μmol/l; K
i2

 = 2.52 μmol/l), where the substrate 
presence increased the inhibition of AChE (decreased 
the inhibition constant). The kinetic constants for neo-
stigmine (2) differed about six fold (K

i1
 = 0.44 μmol/l; 

K
i2

 = 0.07 μmol/l) and the presence of the substrate 
again increased the inhibition of AChE. The inhibition 
constants of compound 8 (K

i1
 = 0.003  μmol/l; K

i2
 = 0.009 

μmol/l) differed only slightly, where the presence of the 
substrate decreased the inhibitory ability of compound 
8 towards AChE. Importantly, both K

i
 values of com-

pound 8 were found to be at least one order of magni-
tude lower compared to the tested standards (1, 2).

Molecular docking and SAR results
The docking study was performed on the most promis-
ing compound after the in vitro screening (8) in order 
to rationalise the possible interactions within the main 
enzyme of interest (AChE) [29]. Three crystal structures 
were used for the docking calculations (hAChE – 1b41, 
mAChE – 2jez, 2jf0) and the best results were obtained 
for a hAChE model (1b41) [30]. It was found that the 
top scoring docking pose of compound 8 (−9.66 kcal/
mol) showed apparent interactions with the aromatic 
residues of an internal anionic site (IAS) and a periph-
eral anionic site (PAS) (Figure 3) [31]. Specifically, a π-π 
interaction occurred between one phenyl moiety and 
Trp86 (3.9 Å) from the IAS. One pyridinium ring showed 
T-stacking both with Tyr124 (3.9 Å) and Phe338 (4.1 Å) 
and a weak π-π or cation-π interaction with Tyr341 (4.5 
Å) from PAS. A second pyridinium ring displayed a long 
distance from the Trp286 (5.3 Å), but the second phenyl 
moiety presented a π-π interaction with His287 (4.1 Å). 
Besides the aromatic interactions, inhibitor 8 did not 

display any interactions with the hAChE catalytic site 
(S203) as might have been hypothesised from its chemi-
cal structure. Inhibitor 8 also showed a good penetra-
tion of the one 4-(3-phenylpropyl)-pyridinium moiety 
into the hAChE active site (Figure 4).

The SAR results of the novel synthesised compounds 
originated from the docking study and the in vitro data 
[32]. Since the but-(2E)-en-1,4-diyl-bispyridinium struc-
ture remained the same for all the novel compounds, the 
main part of the molecule influencing the SAR from the 
various functional groups attached to the pyridinium 
moieties were at the 4-position.

For hAChE, the lipophilic moieties (3–9) suggested 
that they are very promising inhibitors. The aliphatic 
functional groups (3–5) showed interesting differences 
in the inhibitory ability, where the methyl moiety (3) 
was superior to tert.-butyl (5) or the ethyl (4). Among 
the aromatic functional groups (6–9), 3-phenylpropyl 
compound (8) was found to be the best inhibitor 
from the prepared series, superior to phenyl (6) or 
4-nitrobenzyl (9), on account of the valuable π-π or 
cation-π interactions with the aromatic residues of 
AChE (i.e. His, Phe, Trp, Tyr) [33]. The benzyl com-
pound (7) remained insoluble, but introduction of a 
hydrophilic 4-nitro moiety, resulting in 4-nitrobenzyl 
(9), showed good solubility and inhibitory ability 
to the same level as the phenyl compound (6). The 
hydrophilic moieties (10–19) also showed apparent 
differences in their inhibitory ability. Among them, 
3-hydroxypropyl (12), N,N-dimethylamino (13) and 
4-carbonitril (19) were superior to the other hydroxy 
(10, 11) and carbonyl compounds (14–18). Though 
the N,N-dimethylamino compound (13) tested as the 
best hydrophilic moiety, its inhibitory ability was still 
two orders of magnitude lower as compared to the 
3-phenylpropyl compound (8).

For hBChE, the SAR extensively changed. Among the 
lipophilic molecules (3–9), the phenyl (6), 3-phenyl-
propyl (8) and 4-nitrobenzyl (9) compounds showed 
a similar inhibitory ability. The benzyl compound (7) 
remained insoluble, but introduction of a hydrophilic 
4-nitro moiety, resulting in 4-nitrobenzyl (9), showed 
good solubility and an inhibitory ability similar to the 
phenyl compound (6). The aliphatic moieties (3–5) pre-
sented minor inhibition of hBChE. In contrast to hAChE, 
the methyl compound (3) did not inhibit hBChE. The 
hydrophilic moieties (10–19) also showed differences 
in their inhibitory ability towards hBChE. The hydroxy 
(10), carboxy (16), methyloxycarbonyl (17) and car-
bamoyl (18) moieties did not show inhibition of hBChE. 
The N,N-dimethylamino compound (13) was found to 
be superior to all the other hydroxy (11, 12) and carbo-
nyl compounds (14, 15, 19), and its inhibitory ability 
towards hBChE was comparable to the best lipophilic 
moieties (6, 8, 9).

The selectivity between AChE and BChE is another 
necessary factor for suitable future SAR determination 
and further development. In this study, two compounds 
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(5, 10) were found to be greater than three orders of 
magnitude more potent inhibitors of AChE. Though their 
moieties are different, it can be hypothesised why such 
moieties tested so well. The selectivity of compound 5 
with a methyl moiety was probably caused by its small 
spatial size, thereby helping this compound to be accom-
modated in the spatially restricted AChE active site. 
Regarding BChE, compound 5 was probably unable to 
interact with its active site as it does not have the aromatic 
residues similar to the PAS of AChE [34]. The selectivity 
of compound 10 with a 3-phenylpropyl moiety towards 
AChE was confirmed by the docking results, where many 
π-π or cation-π interactions were possible. In the case 
of BChE, many aromatic residues were absent and so 
compound 10 could not interact with this enzyme on a 
similar basis as with AChE.

The valuable SAR features for quaternary 
cholinesterase inhibitors can be defined. The bispyri-
dinium origin of these novel compounds established 
their high affinity for cholinesterases. In addition, spa-
tially narrow molecules (e.g. containing a (2E)-buten-1-
,4-diyl linker) might help access to the AChE active site. 
However, these interactions also depend upon the other 
moieties carried on the pyridinium ring: small moieties 
(e.g. methyl) were found to be suitable for the selective 
inhibition of AChE due to its small spatial size. Similarly, 
the aromatic moieties (e.g. 3-phenylpropyl) were found 
to be convenient and selective inhibitors due to their 
π-electron interactions with the AChE active site.

Conclusion

In summary, seventeen bisquaternary cholinesterase 
inhibitors were prepared. They were evaluated in 
vitro on the human erythrocyte AChE and the human 
plasmatic BChE with regard to their IC

50
 results. The in 

vitro data were compared to currently used carbam-
ate inhibitors (pyridostigmine bromide, neostigmine 
bromide) and also AChE reactivators (pralidoxime, 
K203). One novel compound (10) was found to be bet-
ter than the currently known compounds at inhibiting 
hAChE activity. The kinetic assay confirmed the non-
competitive inhibition of hAChE by this leading novel 
compound. The molecular docking of this compound 
confirmed the apparent influence of both π-π and 
cation-π interactions within the AChE active site to 
help explain its increased inhibitory ability.
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